Exonic sequences in the 5' untranslated region of alpha-tubulin mRNA modulate trans splicing in Trypanosoma brucei.

نویسندگان

  • C López-Estraño
  • C Tschudi
  • E Ullu
چکیده

Previous studies have identified a conserved AG dinucleotide at the 3' splice site (3'SS) and a polypyrimidine (pPy) tract that are required for trans splicing of polycistronic pre-mRNAs in trypanosomatids. Furthermore, the pPy tract of the Trypanosoma brucei alpha-tubulin 3'SS region is required to specify accurate 3'-end formation of the upstream beta-tubulin gene and trans splicing of the downstream alpha-tubulin gene. Here, we employed an in vivo cis competition assay to determine whether sequences other than those of the AG dinucleotide and the pPy tract were required for 3'SS identification. Our results indicate that a minimal alpha-tubulin 3'SS, from the putative branch site region to the AG dinucleotide, is not sufficient for recognition by the trans-splicing machinery and that polyadenylation is strictly dependent on downstream trans splicing. We show that efficient use of the alpha-tubulin 3'SS is dependent upon the presence of exon sequences. Furthermore, beta-tubulin, but not actin exon sequences or unrelated plasmid sequences, can replace alpha-tubulin exon sequences for accurate trans-splice-site selection. Taken together, these results support a model in which the informational content required for efficient trans splicing of the alpha-tubulin pre-mRNA includes exon sequences which are involved in modulation of trans-splicing efficiency. Sequences that positively regulate trans splicing might be similar to cis-splicing enhancers described in other systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes.

In trypanosomes, the generation of monocistronic mRNAs from polycistronic precursors is achieved via RNA processing, namely trans-splicing of the spliced leader sequence at the 5' end and cleavage/polyadenylation at the 3' end of the mRNA coding region. Recent evidence raised the intriguing possibility that these two reactions are coupled. To begin a dissection of the signals required for mRNA ...

متن کامل

Double-stranded RNA induces mRNA degradation in Trypanosoma brucei.

Double-stranded RNA (dsRNA) recently has been shown to give rise to genetic interference in Caenorhabditis elegans and also is likely to be the basis for phenotypic cosuppression in plants in certain instances. While constructing a plasmid vector for transfection of trypanosome cells, we serendipitously discovered that in vivo expression of dsRNA of the alpha-tubulin mRNA 5' untranslated region...

متن کامل

The hnRNP F/H homologue of Trypanosoma brucei is differentially expressed in the two life cycle stages of the parasite and regulates splicing and mRNA stability

Trypanosomes are protozoan parasites that cycle between a mammalian host (bloodstream form) and an insect host, the Tsetse fly (procyclic stage). In trypanosomes, all mRNAs are trans-spliced as part of their maturation. Genome-wide analysis of trans-splicing indicates the existence of alternative trans-splicing, but little is known regarding RNA-binding proteins that participate in such regulat...

متن کامل

Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites

Transcription of protein-coding genes in trypanosomes is polycistronic and gene expression is primarily regulated by post-transcriptional mechanisms. Sequence motifs in the untranslated regions regulate mRNA trans-splicing and RNA stability, yet where UTRs begin and end is known for very few genes. We used high-throughput RNA-sequencing to determine the genome-wide steady-state mRNA levels ('tr...

متن کامل

Dual targeting of isoleucyl-tRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing

Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNAs with their cognate amino acids. They are an essential part of each translation system and in eukaryotes are therefore found in both the cytosol and mitochondria. Thus, eukaryotes either have two distinct genes encoding the cytosolic and mitochondrial isoforms of each of these enzymes or a single gene encoding dually localized produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 1998